
1 

Minimum Redundancy Feature Selection 
from Microarray Gene Expression Data 

 
Chris Ding †  and  Hanchuan Peng ‡* 

† Computational Research Division, and ‡ Life Sciences / Genomics Division,  
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA 

Email: chqding@lbl.gov,  hpeng@lbl.gov 
 

Abstract 
How to selecting a small subset out of the thousands of genes in microarray data is important for accurate 
classification of phenotypes. Widely used methods typically rank genes according to their differential ex-
pressions among phenotypes and pick the top-ranked genes. We observe that feature sets so obtained have 
certain redundancy and study methods to minimize it. We propose a minimum redundancy – maximum 
relevance (MRMR) feature selection framework. Genes selected via MRMR provide a more balanced 
coverage of the space and capture broader characteristics of phenotypes. They lead to significantly im-
proved class predictions in extensive experiments on 6 gene expression data sets: NCI, Lymphoma, Lung, 
Child Leukemia, Leukemia, and Colon. Improvements are observed consistently among 4 classification 
methods: Naïve Bayes, Linear discriminant analysis, Logistic regression and Support vector machines.  

Supplimentary: The top 60 MRMR genes for each of the datasets are listed in 
http://crd.lbl.gov/~cding/MRMR/. More information related to MRMR methods can be found at 
http://www.hpeng.net/. 
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1. Introduction 
Discriminant analysis is now widely used in bioinformatics tasks, such as distinguishing cancer tissues 
from normal tissues [2] or one cancer subtype from another [1], predicting protein fold or super-family 
from its sequence [8][16], etc. A critical issue in discriminant analysis is feature selection: instead of us-
ing all available variables (features or attributes) in the data, one selectively chooses a subset of features 
to be used in the discriminant system. There are a number of advantages of feature selection, to mention a 
few: 

� dimension reduction to reduce the computational cost;  
� reduction of noise to improve the classification accuracy;  
� more interpretable features or characteristics that can help identify and monitor the target dis-

eases or function types.  
These advantages are typified in DNA microarray gene expression profiles. Of the tens of thousands of 
genes in experiments, only a smaller number of them show strong correlation with the targeted pheno-
types. For example, for a two-class cancer subtype classification problem, 50 informative genes are usu-
ally sufficient [13]. There are studies suggesting that only a few genes are sufficient [23][39]. Thus, 
computation is reduced while prediction accuracy is increased via effective feature selection. When a 
small number of genes are selected, their biological relationship with the target diseases is more easily 
identified. These "marker" genes thus provide additional scientific understanding of the problem. Select-
ing an effective and more representative feature set is the subject of this paper.  

There are two general approaches to feature selection: filters and wrappers [18][20]. Filter type meth-
ods are essentially data pre-processing or data filtering methods. Features are selected based on the intrin-
sic characteristics, which determine their relevance or discriminant powers with regard to the target 
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classes. Simple methods based on mutual information [4], statistical tests (t-test, F-test) have been shown 
to be effective [13][7][10][25]. More sophisticated methods are also developed [19][3]. Filter methods 
can be computed easily and very efficiently. The characteristics in the feature selection are uncorrelated to 
that of the learning methods, therefore they have better generalization property.  

In wrapper type methods, feature selection is "wrapped" around a learning method: the usefulness of 
a feature is directly judged by the estimated accuracy of the learning method. One can often obtain a set 
with a small number of non-redundant features [18][5][23][39], which gives high prediction accuracy, be-
cause the characteristics of the features match well with the characteristics of the learning method. Wrap-
per methods typically require extensive computation to search the best features.  

 

2. Minimum Redundancy Gene Selection 

One common practice of filter type methods is to simply select the top-ranked genes, say the top 50 
[13]. More sophisticated regression models or tests along this line were also developed [34][29][38]. So 
far, the number of features, m, retained in the feature set is set by human intuition with trial-and-error, 
although there are studies on setting m based on certain assumptions on data distributions [23]. A defi-
ciency of this simple ranking approach is that the features could be correlated among themselves [17][9]. 
For example, if gene gi is ranked high for the classification task, other genes highly correlated with gi are 
also likely to be selected by the filter method. It is frequently observed [23][39] that simply combining a 
"very effective" gene with another "very effective" gene often does not form a better feature set. One rea-
son is that these two genes could be highly correlated. This raises the issue of "redundancy" of feature set. 

The fundamental problem with redundancy is that the feature set is not a comprehensive representa-
tion of the characteristics of the target phenotypes. There are two aspects of this problem. (1) Efficiency. 
If a feature set of 50 genes contains quite a number of mutually highly correlated genes, the true "inde-
pendent" or "representative" genes are therefore much fewer, say 20. We can delete the 30 highly corre-
lated genes without effectively reducing the performance of the prediction; this implies that 30 genes in 
the set are essentially "wasted". (2) Broadness. Because the features are selected according to their dis-
criminative powers, they are not maximally representative of the original space covered by the entire 
dataset. The feature set may represent one or several dominant characteristics of the target phenotypes, 
but these could still be narrow regions of the relevant space. Thus, the generalization ability of the feature 
set could be limited. 

Based on these observations, we propose to expand the representative power of the feature set by re-
quiring that features are maximally dissimilar to each other, for example, their mutual Euclidean distances 
are maximized, or their pair-wise correlations are minimized. These minimum redundancy criteria are 
supplemented by the usual maximum relevance criteria such as maximal mutual information with the tar-
get phenotypes. We therefore call this approach the minimum redundancy – maximum relevance 
(MRMR) approach. The benefits of this approach can be realized in two ways. (1) With the same number 
of features, we expect the MRMR feature set to be more representative of the target phenotypes, therefore 
leading to better generalization property. (2) Equivalently, we can use a smaller MRMR feature set to ef-
fectively cover the same space as a larger conventional feature set does. 

The main contribution of this paper is to point out the importance of minimum redundancy in gene se-
lection and provide a comprehensive study. One novel point is to directly and explicitly reduce redun-
dancy in feature selection via filter approach. Our extensive experiments indicate that features selected in 
this way lead to higher accuracy than features selected via maximum relevance only. 

 

3. Criterion Functions of Minimum Redundancy 
3.1. MRMR for Categorical (Discrete) Variables 
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If a gene has expressions randomly or uniformly distributed in different classes, its mutual informa-
tion with these classes is zero. If a gene is strongly differentially expressed for different classes, it should 
have large mutual information. Thus, we use mutual information as a measure of relevance of genes.  

For discrete/categorical variables, the mutual information I of two variables x and y is defined based 
on their joint probabilistic distribution p(x,y) and the respective marginal probabilities p(x) and p(y):  
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For categorical variables, we use mutual information to measure the level of "similarity" between 
genes. The idea of minimum redundancy is to select the genes such that they are mutually maximally dis-
similar. Minimal redundancy will make the feature set a better representation of the entire dataset.  Let S 
denote the subset of features we are seeking. The minimum redundancy condition is 
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where we use I(i,j) to represent I(gi,gj)  for notational simplicity, and |S| (= m) is the number of features in 
S. 

To measure the level of discriminant powers of genes when they are differentially expressed for dif-
ferent target classes, we again use mutual information I(h,gi) between targeted classes h={h1,h2,…,hK} 
(we call h the classification variable) and the gene expression gi. I(h,gi) quantifies the relevance of gi for 
the classification task. Thus the maximum relevance condition is to maximize the total relevance of all 
genes in S: 
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where we refer to I(h,gi) as I(h,i).  

The MRMR feature set is obtained by optimizing the conditions in Eqs.(2) and (3) simultaneously. 
Optimization of both conditions requires combining them into a single criterion function. In this paper we 
treat the two conditions equally important, and consider two simplest combination criteria:  
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Our goal here is to see whether the MRMR approach is effective in its simplest forms. More refined vari-
ants can be easily studied later on. 

Exact solution to the MRMR requirements requires O(N|S|) searches (N is the number of genes in the 
whole gene set, Ω). In practice, a near optimal solution is sufficient. In this paper, we use a simple heuris-
tic algorithm to resolve this MRMR optimization problem.  

In our algorithm, the first feature is selected according to Eq. (3), i.e. the feature with the highest 
I(h,i). The rest features are selected in an incremental way: earlier selected features remain in the feature 
set. Suppose m features are already selected for the set S, we want to select additional features from the 
set ΩS = Ω − S (i.e. all genes except those already selected). We optimize the following two conditions: 
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The condition in Eq. (6) is equivalent to the maximum relevance condition in Eq. (3), while Eq. (7) is an 
approximation of the minimum redundancy condition of Eq. (2). The two ways to combine relevance and 
redundancy, Eqs. (4) and (5),  lead to the selection criteria of a new feature:  
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(1) MID: Mutual Information Difference criterion, 

(2) MIQ: Mutual Information Quotient criterion,  

as listed in Table 1. These optimizations can be computed efficiently in O(|S|⋅N) complexity.  

 
Table 1: Different schemes to search for the next feature in MRMR optimization conditions. 
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3.2. MRMR for Continuous Variables  

For continuous data variables (or attributes), we can choose the F-statistic between the genes and the 
classification variable h as the score of maximum relevance. The F-test value of gene variable gi in K 
classes denoted by h has the following form [7][10]:  
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where g  is the mean value of gi in all tissue samples, kg  is the mean value of gi within the kth class, and 

)(])1([ 22 Knn kkk
−−Σ= σσ  is the pooled variance (where nk and σk are the size and the variance of the kth 

class). F-test will reduce to the t-test for 2-class classification, with the relation F=t2. Hence, for the fea-
ture set S, the maximum relevance can be written as: 
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The minimum redundancy condition may be specified in several ways. If we use Pearson correlation 
coefficient c(gi,gj) = c(i,j), the condition is 
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where we have assumed that both high positive and high negative correlation mean redundancy, and thus 
take the absolute value of correlations. (We may also use Euclidean distance as a measure of redundancy. 
As shown in our preliminary results [9], Euclidean distance is not as effective as correlation.) 

Now the simplest MRMR optimization criterion functions involving above conditions are:  

(1) FCD: combine F-test with correlation using difference,  

(2) FCQ: combine F-test with correlation using quotient, 

as shown in Table 1. 
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We use the same linear incremental search algorithm as in the discrete variable case in §3.1. Assume 
m features have already been selected; the next feature is selected via a simple linear search based on the 
criteria listed in Table 1 for the above four criterion functions.  

 

4. Class Prediction Methods  
4.1. Naïve-Bayes (NB) Classifier  

The Naïve Bayes (NB) [24] is one of the oldest classifiers. It is obtained by using the Bayes rule and as-
suming features (variables) are independent of each other given its class. For a tissue sample s with m 
gene expression levels  {g1, g2, …, gm} for the m features, the posterior probability that s belongs to class 
hk is  

)|()|( kiSik hgpshp
∈
Π∝ ,     (11) 

where p(gi|hk) are conditional tables (or conditional density) estimated from training examples. Despite 
the independence assumption, NB has been shown to have good classification performance for many real 
data sets, especially for documents [24], on par with many more sophisticated classifiers.  

4.2. Support Vector Machine (SVM)  

SVM is a relatively new and promising classification method [35]. It is a margin classifier that draws an 
optimal hyperplane in the feature vector space; this defines a boundary that maximizes the margin be-
tween data samples in two classes, therefore leading to good generalization properties. A key factor in 
SVM is to use kernels to construct nonlinear decision boundary. We use linear kernels. 

Standard SVM is for 2 classes. For multi-class problems, one may construct a multi-class classifier using 
binary classifiers such as one-against-others or all-against-all [8]. Another approach is to directly con-
struct a multi-class SVM [37]. In this paper, we used the Matlab version of LIBSVM [15], which uses the 
one-against-others approach. 

4.3. Linear Discriminant Analysis (LDA)  

Fisher's LDA is a very old classification method. It assumes samples in each class follow a Gaussian dis-
tribution. The center and covariance matrix are estimated for each class. We assume that the off-diagonal 
elements in the covariance are all zero, i.e., different features are uncorrelated. A new sample is classified 
to the class with the highest probability. Different from other classifiers in this section, LDA assumes data 
distribution to be Gaussian.  

4.4. Logistic Regression (LR)  

LR [6] forms a predictor variable that is a linear combination of the feature variables. The values of this 
predictor variable are then transformed into probabilities by a logistic function. This method is widely 
used for 2-class prediction in biostatistics. It can be extended to multi-class problems as well. 

 

5. Experiments 
5.1. Data Sets  

To evaluate the usefulness of the MRMR approach, we carried out experiments on fives data sets of 
gene expression profiles. Two expression datasets popularly used in research literature are the Leukemia 
data of Golub et al [13] and the Colon cancer data of Alon et al [2]. As listed in Table 2, both leukemia 
and colon data sets have two classes. The colon dataset contains both normal and cancerous tissue sam-
ples. In the Leukemia dataset, the target classes are leukemia subtypes AML and ALL. Note that in the 
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leukemia dataset, the original data come with training and test samples that were drawn from different 
conditions. Here we combined them together for the purpose of leave-one-out cross validation. 

 

Table 2. Two-class datasets used in our experiments 

DATASET LEUKEMIA COLON CANCER 
SOURCE Golub et al (1999) Alon et al (1999) 
# GENE 7070 2000 

# SAMPLE 72 62 
CLASS CLASS NAME # SAMPLE CLASS NAME # SAMPLE 

C1 ALL 47 Tumor 40 
C2 AML 25 Normal 22 

 
Table 3. Multi-class datasets used in our experiments (#S is the number of samples) 

DATASET NCI LUNG CANCER LYMPHOMA CHILD LEUKEMIA 

SOURCE Ross et al (2000) 
Scherf et al (2000) Garber et al (2001) Alizadeh et al (2000) Yoeh et al (2002) 

Li et al (2003) 
# GENE 9703 918 4026 4026 

# S 60 73 96 96 
# CLASS 9 7 9 9 
CLASS CLASS NAME # S CLASS NAME # S CLASS NAME # S CLASS NAME # S 

C1 NSCLC 9 AC-group-1 21 Diffuse large 
B cell lymphoma 46 BCR-ABL 9/6 

C2 Renal 9 Squamous 16 Chronic Lympho. 
leukemia 11 E2A-PBX1 18/9 

C3 Breast 8 AC-group-3 13 Activated blood B 10 Hyperdiploid>50 42/22 

C4 Melanoma 8 AC-group-2 7 Follicular 
lymphoma 9 MLL 14/6 

C5 Colon 7 Normal 6 Resting/ 
activated T 6 T-ALL 28/15 

C6 Leukemia 6 Small-cell 5 Transformed 
cell lines 6 TEL-AML1 52/27 

C7 Ovarian 6 Large-cell 5 Resting blood B 4 Others 52/27 
C8 CNS 5   Germinal center B 2   
C9 Prostate 2   Lymph node/tonsil 2   

 
Although two-class classification problems are an important type of tasks, they are relatively easy, 

since a random choice of class labels would give 50% accuracy. Classification problems with multiple 
classes are generally more difficult and give a more realistic assessment of the proposed methods. In this 
paper, we used three multi-class microarray data sets: NCI [32][33], Lung cancer [12], Lymphoma [1] 
and child leukemia [22][40]. The details of these data sets are summarized in Table 3. For the child leu-
kemia data, for each class, the number of training samples is listed followed by the respective number of 
testing samples. We note that the number of tissue samples per class is generally small (e.g. <10 for NCI 
data) and unevenly distributed (e.g. from 46 to 2 in lymphoma data). This, together with the larger num-
ber of classes (e.g., 9 for Lymphoma data), makes the classification task more complex than two-class 
problems. These six data sets provide a comprehensive test suit. 

For the two-class problems, we used the two-sided t-test selection method, i.e., we imposed the condi-
tion that in the features selected, the number of features with positive t-value is equal to that with negative 
t-value. Compared to the standard F-test selection, since F=t2, two-sided t-test gives more balanced fea-
tures whereas F-test does not guarantee the two sides have the equal number of features. The MRMR fea-
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ture selection schemes of the F-test (as shown in Table 1) can be modified to use two-sided t-test. We 
denote them as TCD (vs FCD) and TCQ (vs FCQ) schemes.  

5.2. Assessment Measure 

For the first 5 datasets, we assessed classification performance using the "Leave-One-Out Cross Vali-
dation" (LOOCV). CV accuracy provides more realistic assessment of classifiers which generalize well to 
unseen data. For presentation clarity, we give the number of LOOCV errors in Tables 4 - 8. 

For the child leukemia data, we selected features using only the training data, and show the testing er-
rors on the testing set in Table 9. This gives examples where the testing samples have never been met in 
feature selection process. We considered both cross-validation where features are selected using all sam-
ples together and this training/testing procedure and believed is a more comprehensive study of the 
MRMR performance. 

In experiments, we compared the MRMR feature sets against the baseline feature sets obtained using 
standard mutual information, F-statistic or t-statistic ranking to pick the top m features.  

5.3. Discretization for Noise Reduction 

The original gene expression data are continuous values. We directly classified them using SVM, 
LDA, and LR. We pre-processed the data so each gene has zero mean value and unit variance. 

We also discretized the data into categorical data for two reasons. First reason is noise reduction be-
cause the original readings contain substantial noise. Second, prediction methods such as NB prefer cate-
gorical data so that conditional probability can be described using a small table. We discretized the obser-
vations of each gene expression variable using the respective σ (standard deviation) and µ (mean) for this 
gene's samples: any data larger than µ+σ/2 were transformed to state 1; any data between µ−σ/2 and 
µ+σ/2 were transformed to state 0; any data smaller than µ−σ/2 were transformed to state -1. These three 
states correspond to the over-expression, baseline, and under-expression of genes. We also compared dif-
ferent discretization schemes; partial results are summarized in Table 10. 

5.4. Results 

We applied the MRMR feature selection methods on both continuous and descretized data. We performed 
LOOCV using NB, LDA, SVM and LR on the first 5 datasets. The results of the LOOCV errors are 
shown in Tables 4 - 8. Due to the space limitation we only list results of m=3,6,9,…54,60 for multi-class 
datasets and m=1,2,3,…,8,10,…,50 for 2-class datasets. From these comprehensive test results, we have 
following observations.  

(1) For discrete datasets, The MRMR MIQ features outperform the baseline features. This is consistent 
for all the classification methods and for all 5 datasets. Several examples. For Lymphoma dataset, us-
ing LDA, MIQ leads to 1 errors while baseline leads to 9 errors (see Table 4); using SVM, MIQ leads 
to 1 errors while baseline leads to 8 errors. For NCI data, using Naïve Bayes, MIQ leads to 1 LOOCV 
error while baseline leads to 11 errors (we quote the best performance for a given case). 

(2) For continuous datasets, FCQ features outperform baseline features. This is consistent for LDA and 
SVM for all three multi-class datasets, and for LDA, SVM and LR for both 2-class datasets (here 
FCQ is replaced by TCQ). Examples. For Lymphoma, using LDA, FCQ leads to 6 errors while base-
line leads to 11 errors. For Lung, using SVM, FCQ leads to 5 errors while baseline leads to 8 errors. 

(3) Discretization of gene expression data consistently leads to better prediction accuracy. Examples. For 
Lymphoma, using LDA, the best continuous features (selected by FCQ) leads to 6 errors while the 
best discretized features (selected by MIQ) lead to 1 error. Using SVM, the discrete features also out-
perform the continuous features. The same conclusions can be drawn for all other 4 datasets. Note 
that if we restrict to baseline features, this conclusion is not true. In other words, MRMR can make 
full use of the noise reduction due to discretization. 
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(4) Naïve Bayes performs better than LDA, SVM, LR. For the multi-class datasets NCI and Lung, NB 
clearly outperforms other methods. For the 2-class datasets, NB also performs better than other meth-
ods. However, for Lymphoma, using discrete MIQ features, LDA and SVM performs better than NB. 

(5) With MRMR, for discrete data, MIQ outperforms MID; for continuous data, FCQ (or TCQ) is better 
than FCD (TCD). Both MIQ and FCG use the divisive combination of Eq. (5) while both MID and 
FCD use the difference combination of Eq. (4). Thus the divisive combination of relevance and re-
dundancy is preferred. 

Table 4. Lymphoma data (96 samples for 9 classes) LOOCV errors. 

Classifier Data Type           M 
Method     3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 38 39 25 29 23 22 22 19 20 17 19 18 18 17 17 
MID 31 15 10 9 9 8 6 7 7 7 4 7 5 5 8 NB Discrete 
MIQ 38 26 17 14 14 12 8 8 6 7 5 6 4 3 3 

Baseline 40 42 28 26 20 21 21 20 18 19 14 15 13 14 15 
MID 32 15 14 10 7 5 4 5 4 6 5 3 3 4 3 Discrete 
MIQ 40 29 12 8 8 7 5 6 4 1 1 2 1 2 2 

Baseline 66 26 26 17 17 18 18 18 15 11 14 12 11 11 13 
FCD 33 17 16 10 13 11 11 9 8 8 8 8 7 10 9 

LDA 

Continuous 
FCQ 32 18 11 7 7 8 8 7 8 9 9 9 8 6 6 

Baseline 32 29 25 23 20 22 18 13 14 15 11 10 10 8 9 
MID 24 10 7 4 2 3 3 3 3 3 3 3 3 3 3 Discrete 
MIQ 26 21 13 9 8 7 6 5 5 2 1 1 2 1 2 

Baseline 30 24 14 13 12 13 10 11 13 6 8 9 5 6 7 
FCD 24 19 11 13 11 9 10 8 7 8 7 6 5 4 5 

SVM 

Continuous 
FCQ 31 17 9 7 6 6 8 8 6 7 7 8 7 4 4 

 
Table 5. NCI data (60 samples for 9 classes) LOOCV errors. 

Classifier Data Type           M 
Method     3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 29 26 20 17 14 15 12 11 11 13 13 14 14 15 13 
MID 28 15 13 13 6 7 8 7 7 5 8 9 9 8 10 NB Discrete 
MIQ 27 21 16 13 13 8 5 5 4 3 1 1 1 1 2 

Baseline 35 25 23 20 21 18 19 19 16 19 17 19 17 16 17 
MID 31 20 21 19 16 16 16 16 15 17 16 15 16 16 15 Discrete 
MIQ 34 31 26 21 21 17 15 14 14 14 10 9 9 8 8 

Baseline 41 35 23 21 22 21 20 17 16 17 17 21 19 19 18 
FCD 36 27 21 20 19 18 17 15 18 17 17 17 16 15 14 

LDA 

Continuous 
FCQ 35 25 23 22 17 18 17 18 13 14 14 12 13 15 15 

Baseline 34 29 27 25 21 19 19 19 20 18 17 18 18 18 16 
MID 33 20 19 20 18 17 17 16 17 15 14 14 14 15 16 Discrete 
MIQ 33 32 20 23 22 22 14 13 13 13 9 8 7 7 8 

Baseline 50 33 27 27 24 22 22 20 23 20 17 18 15 16 15 
FCD 41 28 27 22 24 22 20 20 20 19 19 20 17 16 16 

SVM 

Continuous 
FCQ 44 30 26 26 25 24 23 23 19 19 17 18 17 15 18 

 
Table 6. Lung data (73 samples for 7 classes) LOOCV errors. 

Classifier Data Type           M 
Method     3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 29 29 24 19 14 15 10 9 12 11 12 12 10 8 9 
MID 31 14 12 11 6 7 7 7 8 6 6 6 6 5 5 NB Discrete 
MIQ 40 29 17 9 5 8 6 2 4 3 3 2 4 4 3 

Baseline 32 31 22 16 13 10 10 10 10 10 9 9 10 10 10 
MID 32 14 10 9 8 8 7 6 6 6 4 7 6 8 8 Discrete 
MIQ 36 26 14 7 7 7 8 8 7 7 6 5 6 6 7 

Baseline 36 26 14 15 10 9 8 9 12 10 8 10 9 10 10 
FCD 18 13 10 8 8 6 6 7 5 6 7 6 7 6 7 

LDA 

Continuous 
FCQ 27 12 9 8 7 8 8 7 6 6 6 6 6 6 6 

Baseline 38 26 18 21 13 6 10 10 12 11 8 9 10 10 9 
MID 19 11 7 4 7 8 5 5 6 5 5 6 6 7 7 Discrete 
MIQ 41 28 12 9 8 8 8 7 7 6 6 6 6 6 6 

Baseline 30 23 14 15 11 9 9 10 9 8 9 10 10 9 8 
FCD 24 11 13 9 8 7 6 8 7 7 8 5 5 6 7 

SVM 

Continuous 
FCQ 31 13 12 10 10 6 7 8 8 7 5 6 6 6 7 
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Table 7. Leukemia data (72 samples for 2 classes) LOOCV errors. 

Classifier Data Type           M 
Method     1 2 3 4 5 6 7 8 10 12 15 20 30 40 50 

Baseline 4 2 1 1 1 0 0 0 0 0 1 2 1 1 3 
MID 4 3 1 1 1 0 0 0 0 0 0 1 1 2 1 NB Discrete 
MIQ 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 

Baseline 4 2 2 1 1 1 1 1 2 1 2 2 2 2 3 
MID 4 3 2 1 1 1 1 1 1 1 1 2 2 2 1 Discrete 
MIQ 4 2 2 2 2 2 2 2 2 1 1 0 0 0 0 

Baseline 12 4 2 2 3 3 2 3 3 3 2 3 2 2 2 
TCD 12 4 2 2 2 2 2 2 1 2 2 1 2 1 1 

LDA 

Continuous 
TCQ 12 4 2 2 1 1 1 2 2 2 1 2 1 1 1 

Baseline 4 7 4 3 1 2 2 1 2 1 1 2 2 4 3 
MID 4 3 4 3 3 2 2 2 2 1 1 1 2 2 4 Discrete 
MIQ 4 6 8 2 1 0 0 0 0 0 0 0 0 0 0 

Baseline 9 3 2 2 2 3 3 4 2 3 3 3 3 4 1 
TCD 9 3 2 3 3 3 2 4 2 1 3 5 1 1 1 

SVM 

Continuous 
TCQ 9 3 3 2 2 1 3 0 0 0 1 1 1 1 1 

Baseline 11 7 2 3 3 1 1 1 3 4 5 3 4 5 11 
MID 11 3 2 3 4 1 2 2 3 4 4 2 5 4 8 Discrete 
MIQ 11 6 6 2 0 0 0 0 0 0 0 0 1 1 3 

Baseline 9 2 2 2 4 5 5 6 7 6 1 2 7 12 8 
TCD 9 2 3 3 5 4 2 5 5 2 6 3 2 1 7 

 LR 

Continuous 
TCQ 9 2 3 4 3 2 2 1 0 0 0 1 0 2 3 

 
Table 8. Colon data (62 samples for 2 classes) LOOCV errors. 

Classifier Data Type           M 
Method     1 2 3 4 5 6 7 8 10 12 15 20 30 40 50 

Baseline 10 7 10 9 9 7 9 9 7 8 8 8 9 9 10 
MID 10 8 8 8 9 10 9 8 7 7 7 8 7 7 7 NB Discrete 
MIQ 10 8 12 8 8 6 6 5 4 5 7 7 8 8 7 

Baseline 22 14 10 10 9 9 8 8 8 8 7 9 8 9 8 
MID 22 6 7 7 8 8 9 7 8 7 7 8 8 7 7 Discrete 
MIQ 22 15 12 9 12 10 7 7 7 8 8 7 8 8 8 

Baseline 18 9 7 9 8 7 7 8 8 8 7 7 7 9 9 
TCD 18 9 6 8 6 7 7 7 7 7 6 7 7 7 8 

LDA 

Continuous 
TCQ 18 9 6 6 7 5 6 7 7 7 7 7 7 7 7 

Baseline 10 16 7 7 7 7 11 10 13 12 14 14 15 18 18 
MID 10 6 6 10 8 12 11 12 10 12 8 9 9 13 15 Discrete 
MIQ 10 10 8 12 15 11 7 7 10 12 10 12 11 12 12 

Baseline 14 10 9 11 10 9 9 9 10 10 10 13 10 9 8 
TCD 14 10 8 7 7 7 6 7 8 10 8 8 8 13 14 

SVM 

Continuous 
TCQ 14 10 8 8 7 7 9 9 10 11 10 5 13 12 15 

Baseline 10 7 8 10 11 11 8 9 11 12 14 18 17 23 21 
MID 10 6 9 7 7 11 10 11 11 13 13 15 16 17 15 Discrete 
MIQ 10 10 8 12 12 13 8 8 10 13 14 14 18 22 27 

Baseline 15 7 8 8 9 9 8 9 11 11 12 9 19 24 16 
TCD 15 7 7 9 9 10 9 10 9 11 14 14 13 18 13 

 LR 

Continuous 
TCQ 15 7 7 7 8 9 9 9 11 10 14 10 13 20 21 

 
To test the case that features are selected using only the training set and then tested on a separate test-

ing set, we considered the fourth multi-class data set, child leukemia [22][40]. A shown in Table 9, for the 
first 100 features selected, in most cases the MRMR features lead to significant less errors than baseline 
features, especially for the LDA and SVM classifiers. For the NB classifier, the better performance of 
MRMR features can be seen clearly for less than 30 features (note: for this data set the non-robustness of 
NB to extra-features turns out to be significant for more than 30 features, it is only faithful to compare 
less than 30 features using NB in this case). 

We list the best performance of MRMR features together with the best baseline performance in Table 
11. From this table, we can quantify the improvements due to MRMR feature selection. For the first three 
multi-class datasets, the LOOCV errors are reduced by a factor of 10. For the child leukemia data, the 
testing error is reduced by several times, too. For the 2-class datasets, the improvements are also signifi-
cant, although not as dramatic as for the multi-class datasets. 
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To better understand the effectiveness of the MRMR approach, we calculated the average relevance 
VI and average redundancy WI (see Eqs. (3) and (2)), as plotted in Fig. 1 (a) and (b). Although for MID 
and MIQ the relevance reduces as compared to baseline, the redundancy also reduces considerably. This 
is most clear for MIQ. The fact that the MIQ feature set is the most effective as seen from Tables 4 - 8 
illustrates the importance of reducing redundancy, the central theme of this research. 

 
Table 9. Child Leukemia data (7 classes, 215 training samples, 112 testing samples) testing errors. 

Classifier Data Type           M 
Method     3 6 9 12 15 18 24 30 40 50 60 70 80 90 100 

Baseline 52 47 44 43 36 33 84 86 82 85 79 83 82 82 88 
MID 48 44 36 31 31 30 28 88 85 76 78 87 89 87 101 NB Discrete 
MIQ 43 32 30 24 21 18 15 54 70 69 76 83 90 88 91 

Baseline 55 47 46 38 34 27 19 28 22 19 15 14 11 8 8 
MID 50 43 32 29 30 29 22 15 13 10 10 9 7 8 9 Discrete 
MIQ 43 43 34 27 23 21 18 16 11 11 6 4 6 6 4 

Baseline 70 69 55 54 54 54 42 31 24 17 15 13 13 10 11 
FCD 55 41 35 34 37 32 34 29 19 15 13 8 4 3 3 

LDA 

Continuous 
FCQ 66 62 52 42 40 41 24 22 11 10 10 9 8 9 8 

Baseline 56 55 49 37 33 33 27 35 29 30 23 20 18 14 13 
MID 45 42 33 33 25 25 29 25 26 22 20 13 10 12 9 Discrete 
MIQ 38 30 34 33 27 26 24 21 14 15 17 10 7 11 9 

Baseline 61 55 54 49 53 59 39 38 33 29 27 21 17 18 19 
FCD 46 44 39 41 48 46 37 35 28 27 29 24 21 25 24 

SVM 

Continuous 
FCQ 49 46 39 38 27 32 26 29 33 29 26 28 29 26 25 

 

The relevance and redundancy for the continuous NCI data are also plotted in Fig.1 (c) and (d). For 
continuous data, the relevance of FCD and FCQ features is reduced slightly from that of baseline, while 
the redundancy of FCD/FCQ reduce significantly.  

 

 

 
Figure 1. (a) Relevance VI and (b) redundancy for MRMR features on discretized NCI dataset. (c) relevance VF and 
(d) redundancy Wc on  the continuous NCI dataset. 
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It is also interesting to examine how the feature sets selected via different methods intersect. For ex-
ample, in Figure 2, we plot the rates of intersecting features for the top m (1 ≤ m ≤ 61) features selected 
for the NCI and Lymphoma data sets. It is clear that the features selected via MID have some chance 
(>50%) to be also selected by the baseline method. In contrast, features selected using MIQ have much 
less overlapping with those selected using baseline method or MID. This is because the quotient-
combination of the MRMR scheme often has a much greater penalty on the redundant features than the 
difference-combination of MRMR. We note that the results in Figure 2 are consistent with those in Figure 
1. 

 

 

 
Figure 2. Intersection of features selected using different methods. (a) NCI data results (b) Lymphoma data results. 
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It is also of concern how the discretization method will influence the feature selection results. We 
tested many different discretization parameters to transform the original continuous gene sample data to 
either 2-state or 3-state variables. The features consequently selected via MRMR always outperform the 
respective features selected using baseline methods. For simplicity, we only show two exemplary results 
for the NCI and Lymphoma data sets using the SVM classifier. The data are binarized using the mean 
value of each gene as the threshold of that gene's samples. As illustrated in Table 10, we see that MRMR 
features always lead to better prediction accuracy than the baseline features. For example, for NCI data, 
48 baseline features lead to 13 errors, whereas MIQ features lead to only 2 errors (3% error rate). For 
lymphoma data, the baseline error is never less than 10, whereas the MIQ features in most cases lead to 
only 1 or 2 errors (1~2% error rate). These results are consistent with those shown in Tables 4 and 5. This 
shows that under different discretization schemes the superiority of MRMR over conventional feature 
selection schemes is prominent.  

 
Table 10. LOOCV testing results (#error) for binarized NCI and Lymphoma data using SVM classifier. 

Data Sets           M 
Method    3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 34 25 23 25 19 17 18 15 14 12 12 12 13 12 10 
MID 34 29 23 20 17 19 15 10 12 12 10 10 9 8 10 NCI 
MIQ 35 22 22 16 12 11 10 8 5 3 4 4 2 2 3 

Baseline 58 52 44 39 44 17 17 14 16 13 11 10 13 10 12 
MID 27 14 6 10 11 9 9 10 4 5 4 4 4 4 4 Lymphoma 
MIQ 24 17 7 8 4 2 1 2 4 3 2 2 2 2 2 

 

 

5.5 Comparison with Other Work 

Results of similar class prediction on microarray gene expression data obtained by others are listed in 
Table 11. For NCI, our result of LOOCV error rate is 1.67% using NB, whereas Ooi & Tan [28] obtained 
14.6% error rate. On the 5-class subset of NCI, Nguyen & Rocke [27] obtained 0% rate, which is the 
same as our NB results on the same 5-class subset. 

 For Lymphoma data (Table 4), our result is LOOCV error rate of 1%. Using 3 classes only, Nguyen 
& Rocke [27] obtained 2.4%; on the same 3 classes, our LDA results is 0% error rate.  

For child leukemia data, Li et al [22] obtained 5.36% error rate using collective likelihood. In our 
best case, the MRMR features lead to the 2.68% error rate. 

The Leukemia data* is a most widely studied dataset.  Using MRMR feature selection, we achieve 
100% LOOCV accuracy for every classification methods. Furey et al [11] obtained 100% accuracy using 
SVM, and Lee & Lee [21] obtained 1.39% error rate. 

For Colon data*, our result is 6.45% error rate, which is the same as Nguyen & Rocke [27] using 
PLS. The SVM result of [11] is 9.68%.  

 

 

 

                                                 
* Many classification studies have used Leukemia and Colon datasets. Due to space limitation, we only list two for each dataset in Table 11. 
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Table 11. Comparison of the best results (lowest error rates in percentage) of the baseline and MRMR features. Also 
listed are results in literature (the best results in each paper). a Ooi & Tan, using genetic algorithm [28]. b Nguyen 
and Rocke [27] used a 5-class subset of  NCI dataset and obtained 0% error rate; using the same 5-class subset, our 
NB achieves also 0% error rate. c Nguyen & Rocke used 3-class subset in lymphoma dataset and obtain 2.4% error 
rate. Using the same 3 classes, our NB lead to zero errors. d Li et al, using prediction by collective likelihood  [22].  
e Furey et al, using SVM [11]. f Lee & Lee, using SVM [21]. g  Nguyen & Rocke, using PLS [26].  

Data Method NB LDA SVM LR Literature 
Baseline 18.33 26.67 25.00 -- NCI 
MRMR 1.67 13.33 11.67 -- 

14.63 a 
5-class: 0 b, 0 b 

Baseline 17.71 11.46 5.21 -- Lymphoma 
MRMR 3.13 1.04 1.04 -- 

3-class: 2.4 c, 0 c 

Baseline 10.96 10.96 10.96 -- Lung 
MRMR 2.74 5.48 5.48 -- 

-- 

Baseline 29.46 7.14 11.61 -- Child Leukemia 
MRMR 13.39 2.68 6.25 -- 

5.36 d 

Baseline 0 1.39 1.39 1.39Leukemia 
MRMR 0 0 0 0 

0 e 
1.39 f 

Baseline 11.29 11.29 11.29 11.29Colon 
MRMR 6.45 8.06 9.68 9.68

9.68 e 
6.45 g 

 
 

6. Discussions  
In this paper we emphasize the redundancy issue in feature selection and propose a new feature selection 
framework, the minimum redundancy – maximum relevance (MRMR) optimization approach. We stud-
ied several simple forms of this approach with linear search algorithms, and performed experiments on 6 
gene expression datasets. Using Naïve Bayes, Linear discriminant analysis, Logistic regression and SVM 
class prediction methods, we computed the leave-one-out cross validation accuracy. These experiment 
results clearly and consistently show that the MRMR feature sets outperform the baseline feature sets 
based solely on maximum relevance. For discrete features, MIQ is the better choice; for continuous fea-
tures, FCQ is the better choice. The divisive combination of relevance and redundancy of Eq. (5) appears 
to lead features with the least redundancy.  

The main benefit of MRMR feature set is that by reducing mutual redundancy within the feature set, 
these features capture the class characteristics in a broader scope. Features selected within the MRMR 
framework are independent of class prediction methods, and thus do not directly aim at producing the best 
results for any prediction method. The fact that MRMR features improve prediction for all four methods 
we tested confirms that these features have better generalization property. This also implies that with 
fewer features the MRMR feature set can effectively cover the same class characteristic space as more 
features in the baseline approach.  

Our extensive tests, as shown in Tables 4 ~ 9, also show that discretization of the gene expressions 
leads to clearly better classification accuracy than the original continuous data. 

For biologists, sometimes the redundant features might also be important. A Bayesian clustering 
method [14][30][31] can be developed to identify the highly correlated gene clusters. Then, representative 
genes from these clusters can be combined to produce good prediction results. We find that our MRMR 
approach is essentially consistent with the variable selection method in [14][30][31]. 
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